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ABSTRACT: We perform a Hamiltonian analysis of the classical type IIB superstring on
AdS5 x 8% in the pure spinor approach. Taking the spatial components of the left-invariant
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study the properties of the BRST generators and the Hamiltonian along the constraints.
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1. Introduction

Quantization of the type IIB superstring on AdS5 x S5 remains an open challenging prob-
lem. Some progress has been achieved through the pure spinor formalism proposed by
Berkovits [71. In a recent paper [[J], quantum consistency was argued by means of
algebraic renormalization arguments. Vertex operators for massless excitations have been
proposed some time ago [LI] and checked to be classically BRST invariant [23]. However,
differently to what happens in flat spacetime [[J], very little or nothing is known so far
about the emission vertices of massive states. This is a sad state of affairs, in view of
the holographic correspondence [[4-[If] and in particular of the remarkable agreement
found in [I7-[9] 2 between the spectrum of single-trace gauge invariant operators in free
N = 4 SYM and the spectrum of the type IIB superstring on AdSs x S5 extrapolated
to the point of higher-spin symmetry enhancement. As always in physics, the situation

IFor review of pure spinor formalism in superstring theory, see [E,E]

2For review, see @, EI]



should improve by further exploiting the symmetries of the background. Because of the
presence of the RR 5-form flux, worldsheet currents are not chirally split as for instance
in WZW models. The study of their quantum OPE may not forgo a classical analysis,
which presents some subtleties in view of the non-trivial role of the pure spinor ghosts. For
this reason, in the present paper, we study the classical algebra encoded in the (graded)
Poisson brackets of the left-invariant (super)currents Jlf = Str(g719,9T*) and the ghost
currents. To this end we resort to a slightly unconventional approach [B3, BJ] whereby the
spatial components of the (super)currents Jf‘, rather than the supercoset representative
itself g € PSU(2,2[4)/SO(4,1) x SO(5), are taken as canonical variables. Along the way,
we identify the first class constraints generating the local SO(4, 1) x SO(5) symmetry and
the gauge transformations arising from the pure spinor constraints. We explicitly deter-
mine the action of the classical BRST generators on the fundamental worldsheet fields and
currents. We then show that the BRST generators commute with the Hamiltonian and
we also prove that these BRST generators are nihilpotent along the constraints. A similar
analysis in the more standard approach with g as canonical variable, has been performed
by Chandia for the heterotic string in the pure spinor formulation [4].

The plan of the paper is as follows. In section [J we recall some basic facts about the pure
spinor formulation of the type IIB superstring on AdSs x Ss. In section B}, after identifying
the momenta Il 4 conjugate to the spatial components of the left-invariant currents JIA, we
compute the classical graded Poisson brackets of the currents in a Hamiltonian approach.
In section [, we study the BRST generators and the Hamiltonian of the theory. In section [,
we derive the canonical equations of motion and show they are equivalent to the covariant
ones for a natural choice of the Lagrange multipliers. Conservation and nihilpotency of the
BRST charge along the constraints are shown in section f]. In section [{ we briefly address
the issue of global symmetries and integrability in the classical Hamiltonian approach.
Section E contains our conclusions and indicates perspectives for future work. Finally
there are two appendices. The first collects our notation and some important features of
PSU(2,2|4). The second describes an elementary application of the canonical approach
presently exploited to the simple case of a free massless boson.

2. Pure spinor superstring in AdS5 x Ss

As shown in [, [Z, I the classical action for the manifestly covariant superstring on
AdSs x S5 takes the form

1
S= — / d?a/=7Str [inﬂv (J}EUW +JM P +J,§3>J51>> +
e
(7763 _ 53) 7
+5 (JM TP — T 1 )]
—/de\/—nStr(quW&)\—|—u§u75“"61,5\

s 1 . 1 . -
+N P IO + NPT — SN, PYN, = SN, PHN,), (2.1)



where we have omitted an overall factor® vA/27 = \/g,N/7. We have assumed the world-
sheet to be a flat two dimensional space-time with the metric n = diag(—1,1) and labeled
the world-sheet coordinates as z#, with p,v = 0,1. However we also use the notation
2% =t, 2! = x and d%x = dxdt. We have also introduced the (chiral) ‘projectors’

T T \j;’ (2.2)
with €%t = —£!0 = 1 and the left-invariant (super)currents and ghost fields
IO = (970,94 g, TV = (97'0u9) T,
TP = (97 0u9)T,, Y = (97'0,9) T,
A= ATy, wy = wuo KTy, A=30T5, i, = i, KT,
Np:—&%J}:—%ﬁv{qym}K%:—wwKwéfvﬂ@,
<m:—&%A}rﬁmﬁ{%ﬂ&sz—%ﬂﬁﬂfﬁ%@, (2.3)

where T4 are the (super)generators of psu(2,2[4), some of whose properties can be found
in appendix A, where we define our notation, and KB denotes the inverse of the Cartan-
Killing metric.
Following Berkovits, the ghost variables A and \ are chosen to satisfy the pure spinor
constraints A
)\V’y,gyﬁ)\ﬁ =0, 5\@7?/35\/3 =0. (2.4)

These constraints imply invariance of the action under the gauge transformations

5wua’P“0 = _Ag(’yg)aa 510#0{73“1 = _AQ(WQ)Q s
6P = =R, OGP = Ac(r)a - (2.5)

Although a promising and thus far consistent formulation of superstring theories the origin
of the pure spinor approach is not fully understood. Moreover interpreting the pure spinor
constraint (R.4) as the generator of local gauge transformations (R.f) involving (wj,, )
suggests that this symmetry should be gauge fixed at the quantum level in some way. There
are many proposals as how to deal with the pure spinor constraint [25- B0 with no definite
widely accepted conclusion.

3. Hamiltonian analysis

In this section we are going to perform the Hamiltonian analysis of the action (R.1). Our
analysis is based on the approach introduced in [BZ] and recently used in the context of
the GS superstring in AdSs x S5 in [B4].

To begin with note that the left-invariant (super) current defined as J = g~ 'dg satisfies
the zero curvature equation

dJ+JANJ =0 (3.1)

3We work in units 27a’ = 1.



or explicitly
Oudy — 0 Jy+[Ju, J] =0. (3.2)

Using this equation we can express the time component of the current Jy as
O1Jo + [Jl, J(]] =D1Jy=0yJ1 = Jyp = Dfl(aoJl) . (3.3)

where D; is defined by the first equality.

Although slightly unfamiliar, it turns out to be very convenient to choose J; as a
canonical variable and then to define the conjugate momentum as the variation of the
action with respect to dpJ; [B3. If we replace Jy in the action (B.1)) with (B.3) and then
perform the variation with respect to dyJ; we obtain

I, =09 4+0o®4+0® 406 =
=Dy (D;1(60J1)<2> + Dy (007)®) + Dyt (80.1) M

1 (3 1 N
—§J1( )+ §J1( ) N,PHO - NHP“()) , (3.4)
where we have used the fact that
/ d*xStr[(DTIG)F) = — / d*xStr[G(D{ F)] .

We can then introduce the equal-time graded Poisson bracket that for two classical
observables F, G depending on the phase super-space variables Z4 = Jf‘, 114 is defined as

o' FOrG 4 0MFOMG

{F.G} = (_1)|FHA| |:8ZA Ol 4 (-1 Oll4 0ZA |’

(3.5)

where the superscript L denotes left derivation. For the components J; = JiATA, II; =
AT, = KABHBTA, the above PB’s read

{1 (2), s (y)} = (~1)Mogo(x —y) (3.6)

or explicitly

{Ji(2), Ma(y)} = 630(x —y),
{@), e ()} = oo — ),
{J1'(z),Hs(y)} = —d56(z —y),
{FH@).105(0) ) = ~050( — ) . (3.7)
It is convenient to define IT# as
4 = KAPIIR (3.8)



and to express J§' as a function of the canonical variables J{*, TI*. With the help of (B.4)
we get

c o c o CT1é rav aTTC o0 1 o
Jg = (O + SO ey g + T £y 4 IO £S 4 JRTIESS,) — U

c CrTO £G4 aftTe £& 1d
J§ = (O IO f s SIS IO S PTG + I

Bled
Je = —(ome + i Hif‘cdf PN [ TP P SIS,

oled = pyrried et plel o gome gl gemd gl gent gl
NL@}’])MO _ L@l]puo ] (3.9)

With (B.9) in mind, we observe few important points. Firstly, the expression ® is
the constraint that reflects invariance of the action under local gauge SO(4,1) x SO(5)
transformations. Secondly, due to the fact that, contrary to the standard GS action,
the action (R.1) contains time components of the currents J, J¢, it is not invariant under
local Kk symmetry. As a result, in the present approach, the Hamiltonian analysis performed
above does not generate the troublesome’ fermionic constraints of the GS approach that
cannot be covariantly split into first and second class, the former being the generators of
symmetry [B4]. Yet, as we will momentarily see, the pure spinor constraint could be viewed
as the generator of local gauge transformation of the w and w conjugate ghosts.

3.1 Graded Poisson brackets of the currents

In this subsection we determine the graded algebra of Poisson brackets of the currents

using (B.7) and also (B.9).

To begin with, note that by definition, the Poisson bracket between currents with
spatial components is equal to zero

{J ), 7P ()} =0. (3.10)

Then it is rather straightforward to evaluate the Poisson brackets of J3'(z) and JE(y).

Using (B.9) and (B.7) we get
{5 (@), I ()} = K*P0,0(2 — ) + J{ (2) fEp K Po(x — y), (3.11)

or more explicitly

} = JH@) K8 — ).
} = K0,0(x — y) + S (2) fog s KPP8(x )
{5 @), T5 W)} = I (@) 5K %0 — ).

b= @) K@ — y)
} = T@) e K@ ),
j

= K%0,6(z — y) + JID(2) 10 KPP5(x — ),

) s



= K49,6(z — y) + J[fg]( 2) 6y K26 — ).
= JH@) fop K15 — ).
{B@, 7w} = @), KL 5@ —y) . (3.12)

The structure of these PB’s deserves some comments. The first important feature to notice
is that they are not manifestly covariant w.r.t. two dimensional worldsheet transformations.
This is a consequence of the non covariant equal time Hamiltonian formalism. Another
feature is the presence of the non ultra-local terms 0,0(z — y). They arise as a result of
our choice of canonical variables. For a better understanding of this approach, we will
perform in appendix A a similar analysis in the simplest case of a two dimensional free
bosonic theory. Finally and very importantly, the PB’s respect the Z; grading dictated by
the underlying PSU (2,2|4) structure.

Along the same line, we can calculate the Poisson brackets between the constraint ®

and the spatial currents J{!

{00 @), 1)} = ~0u6(0 — y) KA — g @)l | D50 —y)
{22(). )} = — @) Koo ).
{old@), 1)} = = @) L K@ —y),
{od@), 12w} =~ @ 5 K@ —y), (3.13)

that explicitly show how the left-invariant currents transform under the (right) gauge
transformations generated by ®led!,

More involved is the calculation of the Poisson brackets {Jg'(z), J&(y)}. Again we
have to resort on (B.9) and (B.7) as well as on the (anti) symmetry properties

PRI = —(-1) PICl R KPR KPP = — (1) PIFL L RO (314)
and the graded Jacobi identities

0= (-1)MIC S e + (D) B fEL + (—)ICNBI B i = 0. (3.15)

After straightforward though rather tedious calculations we obtain
(@), T )} = — (@8 + NP0 4 5Py e | o5 —y)
@), 8 W)} = (U = I)) (@) 5, K 0@ — ),
{F5@). I )} = U5+ ) @) £5, K% — ).
{ @), @)} = — @) 5 K25 — ) (3.16)



and

{0} =
(A @) =
PR A0} = -
np=-
)=~

)(@) fes KPo(z —y),

(J§ + JD) (@) Fo K%8(x — )

oledl 4 NeAprO 4 NEAPrO) (z) fo 4 K746 (x — y)
lef)led) 5

“/[ef]K —y)

faef]K[e lledl 52 —4)) (3.17)

{J&(m ol

{ q)[cd

Finally we also need the Poisson brackets of the generators of the gauge transformations

{oel(0),0le8 )} = — ol KBz — ) (3.19)

Using the above form of the current algebra, we will momentarily derive the classical

Hamiltonian and the field equations, and prove the nihilpotency and conservation of the
classical BRST charges. It is also clear that using the Poisson brackets given above we
can find the Poisson brackets between the chiral components of the currents J{ which are
related to J& and J2 after Wick rotation. We will demonstrate a simple instance of this
calculation in the next section where we will also calculate the Poisson brackets between
the BRST charges and some chiral currents. However due to the non-chirally split structure
of the algebra, for our purposes, it is more convenient to work with the Poisson brackets
given above.

4. BRST charges and Hamiltonian

In this section, we discuss the Hamiltonian and the BRST charges together with their
properties. We then derive the classical canonical equations of motion in the next section.

As a first step, we need the action of the BRST charges on the currents and ghost
fields. To begin with we express Nled Nled] using the ghosts and their conjugate momenta.
Since

0 1
wuozp“ = Ta, wuozp“ = " Ta,

WP = —Fa, WP =t (4.1)
we obtain

Npro — 75 KO0 féc;d] A% = Nledl

Nledpit — 7 K088 fécgdl A% = Nledl

NL@Z} PHO _ 75 K88 fé%d] A = Nled

N,L@P‘“ _ _%Kéﬁf’%]jﬂ = _Nled (4.2)
where 7, A and T, A satisfy the canonical Poisson brackets

(@), me)} =050 —y),  {A(@), 750 } = 630 —y) . (4.3)



However one has to consider effect of the pure spinor constraints on the system (R.4)). Their

presence implies that it is natural to study the classical dynamics of the ghosts system as

the dynamics of a constrained system. Using ([.1) and ([.3), it is easy to see that the
constraints 1 1 )
c_ “ya. .t (O HC — — ) & 1B

o€ = 2)\ Vg~ PE= 2)\ fydB)\ . (4.4)

generate the gauge transformations (P.J) since
[2°(@), ma)} = 5N W)@ — ) { @) 5 | =N W@ —y) . (45)

Using (.5) we also obtain

{0c(@), N () } = —0h(a) fr, Ko (2 — ),
{@%(@), N1 ()} = —dh(a) [,y Koz — ) (4.6)
In the same way we can show that
{oc(@), 0d(y)} =0, {d%), ¢4y} =0 (4.7)

This result implies that the pure spinor constraints are first class.
Let us then consider the Poisson bracket of ®¢d with the ghost variables. Using the
explicit form of ®[<d given in (B:9) and also ([.3) together with ({.J) we obtain

{@ld @), () } = N (@) [l K5 ~ ).

{@[CA] (@), gd(y)} = X)L K5 —y) (4.8)

that explicitly demonstrates that A, \ transform nontrivially under SO(4, 1) x SO(5) gauge
transformations. Moreover, ({.§) also implies

{210 (@), 94(0) } = L),y K15 — ),
{210 (@), 85(y) } = B () 15y K05 — ) (49)

Then (B13), (£7) and (E9) show that ®ledl &< &< consist of only first class constraints.
This fact will be important below.
For later purposes we here determine the following Poisson brackets

{ol (@) msy)} = KN g7 o ()0 — ),

{@ld(@), 5} = KEEN P 7 ()o@ —y) (4.10)

and
{2 (a), NeD(y) p = —Nlatl () flet, | KeDo(a — ), (4.11)
{0k (), Nl } = —Nlat(y) plead | letlellg(a —y) (4.12)



4.1 Classical BRST generators

We are ready to study the action of the BRST charges on the fundamental fields that
appear in the action (R.I). As shown in [[L1], [J, PJ] the BRST charges take the form

Qr = / dzA® Ko JGPH0 = — / da X KaplJ§ + 7],

Q1 = / e\ K, 5 T3P = / K, 575 — 7). (4.13)
Then using the Poisson brackets determined in the previous section we easily get
Qi) = =N )rE,  {QuJEw)} = 2T )1,
[Qu i)} = 2T w)rs,,  {QuJ5w)} = 2T W),
{Qr. T} (W)} = =N TE () fS. {QL,J?(y)} = N JE (W) fSe
{Qu JEW)} = 0N () + TN () Fgs = VIA“ (1),
{Qr W)} = 030 @) + TV ) 185 = Vid ) (4.14)

where Vi X4 = 91 X4 + S XP(y) 4 ;. and also

{QRaJO (y)} = _)‘a‘](]( ) aco

(Qu I )} = X(@ 4 NP 4 NP L = V10°(0),

{Qr 8} = V(@ 4 Nledipro LC—}PW)(y) S + V1IN W),
{Quitw)} = -2 U515 - (4.15)

It turns out that we will also need the following Poisson brackets
{Qu. /W) = 2 rwre,
cd] e cd
{Qr s W} = M) (4.16)

The Poisson bracket between BRST charges and ghost fields can be easily worked out
using (f.J) and we obtain

{Qu.m W)} = {Qur A1)} =0,
{Qu o)} = —K 5100 = )W), {Qrmaw)} =0,
{Qr.7aly)} = ~KaplTy + T)(y),  {Qr.Aaly)} =0. (4.17)

In the same way we can determine the Poisson brackets between BRST charges and
Nled | Nled]

{Qu N} = (77 = s

{Qr N1} = 5 + N )5 (4.18)



Before we conclude this section we would like to briefly discuss the BRST transforma-
tions of the (light-cone) components of the currents

1

A A A

It is rather straightforward to calculate the action of the BRST charges Qgr, Q1 on the
(chiral) currents J4!. For illustration, let us consider the action of the charge Q = Qr+Qy,
on the current J$. Using ([.14) we obtain

{Q 15w} = =A%) re, = X TL )15

{QIEW)} = 2T ()2 — NI () 2 (4.20)

In the same way we can calculate the action of the BRST charge ) on all remaining
currents. Since the procedure is straightforward we will not report it here. However we
have to stress one important point. It can be easily shown that the action of the BRST
charges on the chiral currents that in the canonical formalism is defined as the Poisson
bracket between BRST charge @) and corresponding current, does not fully coincide with
the BRST transformation of currents given in [[L1l]. This follows from the fact that our
calculation is based on Hamiltonian formalism that is not manifestly covariant. Secondly,
the transformation of the currents given in [L1] is a combination of a BRST transformation
and a gauge transformation. Unfortunately it is not completely clear to us how these
transformations are related to the BRST transformations given here.

4.2 Hamiltonian

At this point we are ready to determine the Hamiltonian for the pure spinor string in
AdS5 x Ss. Using the supergroup notation, we define the matter part of the Hamiltonian
as

1 C C 3
Hoate = / dzStr(9g 11T — Linas) = / dz (5 eI e + TS T e + G K

3 7o a 18 3 1o C lef] \7[c lef]
+J5JO KB“ + Jl JfKaB + ijl KBOJ + N[J}K[@l][gi]Jl = — N[fd]K[gd][Qﬁjl _)(4.21)

In the same way we define the ghost part of the Hamiltonian as

thost = /dx <7Ta80)\a + ﬁaaoj\& - ‘cghosts> =

/dw <—7Ta81)\a + ﬁ'&alj\a + N[C—CqK[c_d][gﬁN[gﬁ) (4.22)
using the fact that
cd v lef] _ cd e
NP Ko N ™ = =N K oy NI (4.23)

Finally we introduce the Hamiltonian that corresponds to the SO(4,1) x SO(5) gauge
symmetry constraints and to the pure spinor constraints (@)

H, cons = Heoset + H, pure s

,10,



Heoset = /dxr[cd}q)[cd},

Hpure = /dx(ng)Q + f‘£<i>£) ) (4.24)

where F[cd]’ ¢,1c are some a priori arbitrary functions of the phase space variables

(JA T4, M\, A, 7).4 Then the total Hamiltonian is equal to
H = Huyatt + thost + Heons - (425)

The general theory of constrained systems requires that one make sure that the time
evolution of the constraints does not generate any additional (secondary) ones [BJ]. Let us
begin with @4 and prove that

{cp[C—d](x),H} ~0, (4.26)

where ~ means that this Poisson bracket vanishes on constraint surface ®lcd = (.
Firstly, it can be explicitly shown, using the Poisson brackets given in the previous
section that

{qﬂ@] (), Hunate + thost} ~0. (4.27)

This result can be also considered as a consequence of the fact that Hpatt + Hghost are
manifestly gauge invariant. On the other hand the Poisson bracket of Pledl with Hoset 18
equal to

{890@), Hoo} = [ dy {000 D)} 21201(0) +

+ Dpp KLl ]f 39 (z) ~ 0, (4.28)

[gh][ab]

where we have used (B.1§). Finally, the Poisson bracket between Pledl and Hpyre can be
easily calculated with the help of (JL.9) and we get

{05 (), Hpuro } = / dy({ @1 (2), T (y) } 0<(y) + { @0 (@), Toy) | <)) +
.o/ (x) I fias KO L T BT (2) £, K121 0. (4.29)
In other words the Poisson bracket between ®[¢4 and H vanishes on constraint surface and
hence the time evolution of ®¢ does not generate additional secondary constraint.

The situation is slightly more complicated in case of the pure spinor constraints ([£.4).
In fact, it is easy to see, using ([.6]) that

{9%(2), Hyate} ~ 0, {(i)g(x), Hmatt} ~0. (4.30)

4Tt would be certainly interesting to perform a “more symmetric” analysis, whereby the generalized
BRST operators include the constraints <I>[ﬁ], d<, d<, as suggested in @] We leave this analysis to future
work.

— 11 —



Moreover, we can also show in the same way as in (.29) that the Poisson bracket between
pure spinor constraints and Hceset vanishes on constraint surface. Finally, using (@) we

can show that

(0%(x), Hpure} = {@Q(x),Hpure} ~0. (4.31)
On the other hand the Poisson brackets between ®<, < and Hgpost are equal to
{9(2), Hygnost} = =010\ (@) = @G, n N () =
—019%(z) — (I)dfdg[gi]]v[gﬁ (),

{8(0), Hypow } = 013 N () - BLp5, N () =
31@9(35) _ (i)ifgg[gﬁN[gﬁ (z), (4.32)

where we have used ([.5) and ([.§). We momentarily argue that these expressions vanish
along the constraints ®¢ = &< = 0. It is obvious that this is true for the second terms
on the second and the fourth line in (.39). In order to clearly demonstrate that the first
term on the second line in (f.39) vanishes along the constraints as well, note that it can
be written as

019%(x) = lim ﬁ(@g(m') _o%(x)) . (4.33)

' —x
In other words we can interpret this term as a difference of the constraints at different
points z = z’. Since the constraint functions have to vanish for all x it is now clear that
this difference vanishes as well. In the same way we can argue that the first term on the
fourth line in (J.32) vanishes on the constraint surface $¢ = 0. In summary, the time
evolution of the pure spinor constraints does not generate new secondary constraints.

5. Equations of motions

Using the form of the Hamiltonian ([f.2§) and the known Poisson brackets it is easy to
determine the classical equations of motion for currents and ghosts. We explicitly determine
these equations and show that they coincide with the equations of motion derived in the
Lagrangian formalism [[L1], 2, R3], for an appropriate choice of the gauge parameters,

PV, + S, NP -+ [, K =0, (
PrY, JW 4 (I NP+ [T NP =0, (
PN I — e [T JW] + [JP, NP + [P, NP =0, (
PN P 4 @ LI TP+ TP NP + 172, NP =0, (
PR\ — PR\, N, =0, (
PRV, A — PHN N, =0, (

where

YV, J = 0,00 + 79, 107,

VA= A+ 10N, VA =0,A

+

-
=

<

(5.7)

- 12 —



and where we also used the notations defined in (R.3).
Let us now turn our attention onto the Hamiltonian formalism. Recall that the time

dependence of any classical observable is governed by the equation
X ={X,H} . (5.8)

We must also stress that we will write the resulting form of the equations of motion that
is valid along the constraints ®lcdl = §c = e = 0.
Let us start with the equation of motion for A%, A%, Using

{A2(@), NEed(y) } = K7 N0 @)s(w - ) (5.9)
and
N 7 [c apB rled] 4
{3@), Kty } = K2 1508 @)3(w — y) (5.10)
and also using ([L.2) we easily get the equation of motion for A\*

As we know T[4 are arbitrary functions that reflect the gauge invariance of the theory.
However we can fix the form of these parameters I'lg in order to obtain the form of the
equation of motion that coincide with the covariant equation (5.5).Using the fact that

cd ACV C [e3
Tieg A fLE}KB =Trled)yrfe, (5.12)
and by comparing (5.5) with (5.11)) we see that it is natural to take
rled — _ yled (5.13)

In what follows we will assume the choice (5.13) that in the end will lead to the equivalence
of the equations of motion derived from the Hamiltonian formalism with the ones derived
using the Lagrangian formalism.

The equation of motion for A can be easily derived as in the case of the ghost A and it
coincides with (f.6) with the help of (5.19).

In the following, we will derive the equations of motion for matter variables J (@) using
the Poisson brackets derived in the previous section and the matter Hamiltonian in ({£.21).

Let us start with the equation of motion for Ji

30‘]12 = {J1£7H} =

efl
OLT + KIS+ RIS+ TR I 18— T T (5.14)

that can be also written as
Vot P v JP 4 [0 T 4 g P =0 . (5.15)

On the other hand the equation of motion for Jg is more involved and takes the form
o0ls = {Jg.HY = JEN g2, f]PW + 2N e P

[ef] [6f]
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or equivalently
Vil = Vodg? + 7P NP 4 P NP = P a7+ Y g =0 (57)

On the one hand, if we sum (F.18) with (5.17) we obtain the equation that coincides
with (.3). On the other hand, if we take the difference of equations (5.19) and (5.17) we
get an equation that coincides with (f.4).

Let us now consider the equation of motion for Jf*. After some manipulations it can
be written as

~ VoV + Vgt (5P, 1P - 1, ) +
+[JV, NP+ [TV NP =0 . (5.18)

In the same way we can proceed with the equations of motion for J§ that in the compact
notation takes the form

Vi = Vo M+ (1P, 5P - P, 0P =0 (5.19)

It is easy to see that the if we add together (p.1§) with (p.I9) we derive the equation (5.9).
In the same way we can show that the equations of motion for Jf‘,JO‘S‘ derived in the
Hamiltonian formalism imply the equation (f.1]).

6. Conservation and nihilpotency of the BRST charges

In this section we will show that the commutator of the BRST charges Qr, Q1 with the
Hamiltonian vanishes provided the dynamics is restricted to satisfy the local SO(4,1) x
SO(5) constraint ®[€ = 0 and the pure spinor constraint for the ghost fields. As a first
step, we determine the Poisson bracket between Hpatt and Q7. Using the Poisson brackets

given in ([.14), (E15) and (£16) we obtain

« ¢ 3 3 3 cd Crle
{Qr, Hyatt } = /dﬂc(—81>\ Kaﬁ(‘]g — Jf) + (Jg — Jlﬁ)mfé;}K[c_dMgﬂNLﬁ

+ xvoled e (K T8+ NN fe K AT+ T))) (6.1)

On the other hand the Poisson bracket of Q) with Hgpes can be easily worked out
using (.17) and (f.1§) and we get

« 6 6 6 31y a pled \7[e
{Qr, Hghost } = /dﬂﬁ(aﬂ K lJ5 = )= 15 = I fga}K[c_d][gﬁN[_ﬂ) - (6.2)
Finally the Poisson bracket of Qr with Hoget is equal to
{QLa Hcoset} = /dx {Q[n F[@} (CC)} q)[ﬁ] (CC) ) (63)

where we have used the fact that {Q 1, dled] (x)} = 0. In the same way we can show that

{Qr, Hpure} = 0 . (6.4)
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Collecting all these results we obtain that the commutator of QQr with H is equal to

{Qu, H} = /dx()‘vfﬁ[aﬂKaBJg +{ Q1. Dieqy () }) @1 ()

+ / deX Nl fe K (T8 1 07) (6.5)

The expression on the first line in (B.5) is proportional to ®[<@ that is zero on the constraint
surface. On the other hand using the explicit form of N we can rewrite the expression

on the second line in (B.5), omitting the factor K, 5(Jo - Jl)B, as

cd] ra 3 rled «a 1 3 ra c
NNt e = m R FtN i, X1 = Sma KPS (N F5 ), (6.6)

where in the final step we have used the generalized Jacobi identity (B.15). However since
ffy = 2(7%)sy we obtain that the BRST charge @, is conserved on the constraint surface

olddl — gc =0 . (6.7)

In the same way we can calculate the Poisson bracket of Qr with H and we obtain

{Qr H} = /dx(_‘]gﬁ(“’”)Kad Sea + {Qr T (2) }) 214 (2)

- / daNlEd 80 S K (J8 + 00 (6.8)

The expression on the first line in (f.§) is again proportional to the constraint ®led and

[cd]

hence it vanishes on the constraint surface ¢4 = (0. On the other hand the expression on

the second line is proportional to

_N[C_d}f[zdhjﬁ](&a _ _WWK'yszé%_d} j\ﬁf&l]&jﬂ _

1 L P R
- - YO & (NY £E NBY ~ HE
27T,YK fég()\ f‘/ﬁ)\ )~ (6.9)

and we see that the Hamiltonian ‘commutes’ or, rather, is in involution with Qg along
the constraints. In other words we have shown that the BRST charges are conserved as
expected for any generator of a global symmetries.

It is also important to prove that the BRST charges are nihilpotent at least on the
constraint surfaces ®d = ¢ = $¢ = 0. In other words we have to show that the
Poisson brackets between QQg, @ vanish or they are proportional to generators of gauge
transformations. In fact, using the known form of the Poisson bracket between BRST
generator Qr, and the currents J4 we easily obtain

_/dxAO‘KaB ({en. @} - {aunHw)}) =

= / dr XK 5 fANJE — JF] . (6.10)

{Qr,Qr}
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Using the fact that
N A fre AT = N A K g ~ @4 (6.11)

we obtain the result that the BRST charge Q1 is nihilpotent as a consequence of the pure
spinor constraint (f.4). We would like to stress that our proof that @ is nihilpotent is
valid even if all fields are off-shell. It only relies on the local SO(4,1) x SO(5) and pure
spinor constraints.

In case of Qg we proceed in the same way and we find that Qg is nihilpotent as well.

Finally, we can calculate the Poisson bracket between Qr and Q7

(QuQr} = = [ oA Kaal1Quo 5 )} + {Qu. Jf w))) =
_ / d2AS K N (91) 4 Ned - Fledly o (6.12)

It is convenient to rewrite the term proportional to Nld as

C « 1 c « 3 c
NNl g = —5N FesN fS K g ~ @ (6.13)

and we see that it vanishes on the constraint surface ®¢ = 0. In the same way we can show

N Ko Nl fo o = —%X@ fggxﬁ [hia KK ~ &8 (6.14)
that vanishes on the constraint surface ¢ = 0. Finally, the first term in (6.12) is propor-
tional to ®l< and hence it vanishes on the constraint surface ®d = .

Let us summarize the results presented in this section. We have shown that the Poisson
brackets between BRST generators vanish on the constraint surface. It is important that
this result holds without assuming that the fundamental fields obey the equations of motion.
We also hope that this result can be considered as an additional support to the analysis
performed in [[L12]. It would be certainly very interesting to extend this analysis to the
full quantum theory and further explore the consequence of the non-chiral splitting of the
currents.

7. Global currents and integrability

We would now like to study the classically conserved local currents, that generate global
PSU(2,2|4) transformations, and their non-local extensions, whose conservation strongly
supports classical integrability of the theory [BY, B7, B, E0, B4, [], within the present
approach.

In the covariant pure spinor formalism the problem has been studied by Vallilo [23].

One starts with a new set of left-invariant currents J(u) satisfying the flatness condition

dJ+JANJ=0 (7.1)
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for any value of the spectral parameter u with the ’initial’ condition j(O) = J = g ldg.
Making an ansatz of the form

1

Ju(u) = J, + 573W[a(u)ﬁ<2> + b(u)J*D + ¢(u)J'®) + d(u)N”]
1 - -
+ 5P [@(w) " + b(w)J" D + &(u)J*S) + d(u)N"] (7.2)

and imposing flatness, using flatness of .J,(0) and the classical field equations, derived
above in a Hamiltonian form or in [R3, [, g in a Lagrangian form, one gets®

¢
d=e*—1 d=e 2 -1 (7.3)
so that eventually

Ju(uw) = J, 4 (nu(coshu — 1) + ¢, sinh ) JV?) +
(7 (cosh ue’? — 1) + €. sinh ue/?) v 4

(7 (cosh ue™? — 1) + €, sinh ue™?) g3 4

+ sinh ue”ﬁw,N" — sinh uefupﬂ,,N" )

(7.4)
Flatness of the current J implies integrability for any u of the equation
Dyx =0 (7.5)
where Du =0y + jﬂ. It turns out to be convenient to exploit the combination
€ 0" X = —e,wj”x +ud,x + Uqu . (7.6)
Setting A, (u) = J,(u) — J, = ug~'a,(u)g (since A,(0) = 0) one gets
e’ (gx) = udyu(9x) + (u?ay(u) — ueya” (u))(gx) (7.7)
Expanding x and a, in powers of u around v = 0, one gets
n—1
E,uz/ay(an) = a,u(anfl) - [Euuaz - au,k—l](an—k—l) (78)
k=0
The lowest order yields
n=>0 9" (gx0) =0 (7.9)

50ur spectral parameter u is related to the spectral parameter p of [@] by u = e". Note also that
we have chosen one particular solution from the ones found in @] in order to obey the initial condition
JA‘L (0) = Ju. It is remarkable that the classical theory admits the same two one-parameter families of flat
currents if one sets the contribution of the pure spinor ghost N to zero.
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1

that implies yg = Cg™", where C' is a constant that we can set to C = 1 henceforth for

simplicity. Plugging the latter in the second equation yields
n=1 €,0"(9x1) = —€uag (7.10)

which in turn implies that j, o = €,,af is a classically conserved local current. In the pure
spinor approach one finds

1 - .
Juo =g |JP + TN + I3 4+ §EW(J”(1) — JYO) 4 PNV + PWN”)} g ' (7.11)
Notice the difference w.r.t. the GS approach where
. 1 y y _
o =9 |0+ e (D (3))] g (7.12)

in addition to the pure spinor contribution, absent in the GS approach, there is also an

)

extra contribution in J,Sl) and J,Sg since they appear in the kinetic term and not only in the

WZ term, as required by x symmetry which is instead fixed in the pure spinor approach.
The components j;?,o = Str(T4 Juo) of the conserved currents are expected to satisfy

classical graded Poisson brackets encoding the structure of the global PSU(2,2|4) algebra.
As anticipated the procedure can be pushed forward to identify the non-local currents.

The first one arises at the next order where one finds

Jip = Euuay(gX2) = _EW(GSQXI +ay) (7.13)
where

) 1 ~ -
ap1 = glJt? + g(J}}) +JP) + §EW(JV<1> —J"N 4 PNV + P, NYg™t  (7.14)

and

91 = — 55 (0ueh) = 55( Do) (7.15)
so that 1
Jip = jm@((\'/aﬂo,u) — €uay (7.16)
and so on.

The classically conserved non local currents generate a Yangian that has been studied

for instance in [B7, BY.

8. Conclusions

The present investigation has been devoted to a classical Hamiltonian analysis of the type
IIB superstring on AdSs x S® in the pure spinor approach. Following B2, B3, we have
taken the spatial components of the (super)currents as canonical variables. In particular,
we have computed the classical graded Poisson brackets of the left-invariant (super)currents
and identified the first class constraints associated to the gauging of SO(4,1) x SO(5). We
have then studied the properties of the BRST generators and the Hamiltonian that governs
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the dynamics of the system compatibly with the local SO(4,1) x SO(5) and pure spinor
constraints. Contrary to the standard GS approach, whereby fermionic constraints are
both first and second class, the former being associated to local k symmetry, the latter to
the Dirac constraint, all the constraints we have found are first class and can be interpreted
as generators of local symmetries. They appear in the classical Hamiltonian via suitable
Lagrange multipliers. For a natural choice of the latter, we have satisfactorily shown
equivalence of the canonical equations of motion with the covariant ones. Finally we have
briefly discussed the global symmetries and the issue of integrability within the present
framework.

It would be very interesting to further study the structure of the classical global al-
gebra, that includes the global PSU(2,2|4) symmetry, and its representations. A crucial
step towards understanding the structure and classifying the classical string configurations
(“motions”) is determining the action of the currents on the fundamental fields, either the
coset representative g or the spatial components of the left-invariant (super)currents, and
ghosts. The latter are inescapably tangled with the ‘matter’ fields due to their non trivial
transformations under space-time symmetries. One could then tackle the much harder
issue of quantizing the string in this background and, in particular, finding the spectrum
of excitations beyond the “massless” supergravity states.
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A. Properties of PSU(2,24)

In this appendix, we briefly review the properties of the superalgebra psu(2,2|4), for more
details we recommend the papers [[L1], [2, BT, B4].
The generators of psu(2,2|4) satisfy the graded commutation relations

TuTp — (—V) BT, = fGBTe, (A1)

The (super)index A = (¢, [ed], ¢, [ d'], a, &) runs over the tangent space indices of the
super-Lie algebra of PSU(2,2|4), so that (¢, [ed]) with ¢,d = 0,...,4 describe the SO(4,2)
isometries of AdSs and (¢, [¢'d']) with ¢,d’' =5...,9 describe the SO(6) isometries of S°.
We also preserve the notation o and & for the two 16-component Majorana-Weyl spinors.
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Finally, ¢ stands either for ¢ or ¢ (10 (pseudo)translations). In the same way [cd] stands
either for [ed] or for [¢d’] (10+10 (pseudo)rotations’).

The non-vanishing structure constants ng are

fap =g, [fip=27

ap B’
1= = s, £ = A =~ 30,
= 18 = 3 0Rep?®, fE = —1h = 5 (040"
S = ool i = 2085l He = T = et
f[[ciﬁ][gﬁ = % <?7g555%] - Wgﬁg op + ngﬁgf%] - 77@5g5§]) )
Fan =~ = 5068 Fons =~ Fho = 500e) (A.2)
The graded-symmetric Cartan-Killing supermetric
Kap = Str(TaTp) = (1) 4I1B Kp, | (A.3)

with |A| = 1 if A is associated to a Grassmann odd generator and |A| = 0 if it is Grassmann
evern.

An essential feature of the superalgebra psu(2,2|4) is that it admits Z4 automorphism
2 such that the condition Q(H) = H determines the maximal subgroup SO(4, 1) x SO(5)
that has to be quotiented in the definition of the coset.

The Z4 authomorphism 2 allows us to decompose the superalgebra G as
G=Ho®H1®Hs®H3, (A.4)
where H,, denotes the eigenspace of €2 such that if h, € H, then
Q(hy,) = i’h,, . (A.5)

As we have argued above (hg) = hy determines Hy = SO(4,1) x SO(5). Hs includes the
remaining bosonic generators of the superalgebra, while Hq, Hs consist of the fermionic
generators of the algebra. The authomorphism (2 also implies a Z,4 grading of the (anti)com-
mutation relations

[Hpqu] € Hp+q (mod 4) - (A'G)

The generators of subspaces H() are denoted as

HO . T[@] y Hl . Ta, HQ . Tc, Hg . Td . (A?)

Then we can write the current J, as

Ju= I =JO + IV + @ + 3 (A.8)
0) _ 7lcd 1) _ jo 2) _ gcC 3) _ 76
JO =g, IV =0T, JP =UT,, I =JiTs,  (A9)
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where A = (a, @, ¢, [cd]) and where JJ, JS‘ are Grassmann odd vectors, while JLQ], Jii are

Grassmann even vectors. The Killing form (H,, H,), defined in terms of a supertrace®, is

also Z4 invariant and hence we have
(Hp, Hy) =0, unless p+¢=0mod 4 . (A.10)

Using the relation ([A.1() we find that the the Cartan-Killing (super)metric ([A.J) takes the

form
Kledles) 0 0 0

Kap = 0 0 0k | (A.11)
0 0 7g O
0 kap 0 O

Finally we also note that the structure constant of the psu(2,2[4) algebra obey the graded
(anti) symmetry property

fRsKpe = —(—)AP P Ko = —(=1)PIC R Kpg (A.12)

B. Illustration of the Hamiltonian procedure

In this appendix we will demonstrate that the canonical approach given in section f] can

be easily applied to the case of a free massless boson.” Let us start with the action

1
S = -5 / A2t 9,00, ¢ . (B.1)

In the standard Hamiltonian treatment we consider ¢ as canonical variable with the con-
jugate momentum P = Jyp¢ and with the standard Poisson brackets

{¢(z), P(y)} = d(x —y) . (B.2)
On the other hand let us introduce the group element g = e?. Then
Ju = g_laug = 0uo (B.3)

and hence the action (B.I]) can be written as

1 .. .
S = ) /d233(10,70 — Jij1) (B.4)

It is obvious that the current j,, obeys the flatness condition
Oujv — Oy = 0 (B.5)

that allows one to express jg as
. 1, .
Jo = 8—30]1 (B.G)
1

SWe define the supertrace Str in such a way that Str(M) = TrA — TrB if M is an even supermatrix and
Str(M) = TrA + TrB if M is an odd supermatrix.
"We thank H. Samtleben for e-mail exchange on this.
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and hence we can interpret j; as canonical variable. If we define the conjugate momentum

as ™ = 65/309pj and use (B.6) we obtain

1 .

™ = —?(30]1), (B.?)
1

where it is understood that j; obeys appropriate boundary conditions. We define the

canonical Poisson bracket according to

{1(@),7(y)} = 0(z —y) . (B.8)
Inverting (B.7) we obtain
—O1m = jo (B.9)
and hence
{do(@),51(y)} = 026(z —y) . (B.10)

On the other hand jo = ¢ = P,j; = 814 and hence using {¢(z), P(y)} = d(z — y) we
obtain

{go(@), 11 (v)} = {P(2),0y0(y)} = —0yd(x — y) = 0x0(x —y) (B.11)

that coincides with ([B.1(). The only subtlety one has to take into account is the presence
of the zero modes of ¢ and w. Luckily they are finite in number and can be dealt with
separately in connection with the choice of boundary conditions.
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