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1. Introduction

Quantization of the type IIB superstring on AdS5 × S5 remains an open challenging prob-

lem. Some progress has been achieved through the pure spinor formalism proposed by

Berkovits [1 – 5]1. In a recent paper [12], quantum consistency was argued by means of

algebraic renormalization arguments. Vertex operators for massless excitations have been

proposed some time ago [11] and checked to be classically BRST invariant [22]. However,

differently to what happens in flat spacetime [13], very little or nothing is known so far

about the emission vertices of massive states. This is a sad state of affairs, in view of

the holographic correspondence [14 – 16] and in particular of the remarkable agreement

found in [17 – 19] 2 between the spectrum of single-trace gauge invariant operators in free

N = 4 SYM and the spectrum of the type IIB superstring on AdS5 × S5 extrapolated

to the point of higher-spin symmetry enhancement. As always in physics, the situation

1For review of pure spinor formalism in superstring theory, see [6 – 10].
2For review, see [20, 21].
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should improve by further exploiting the symmetries of the background. Because of the

presence of the RR 5-form flux, worldsheet currents are not chirally split as for instance

in WZW models. The study of their quantum OPE may not forgo a classical analysis,

which presents some subtleties in view of the non-trivial role of the pure spinor ghosts. For

this reason, in the present paper, we study the classical algebra encoded in the (graded)

Poisson brackets of the left-invariant (super)currents JA
µ = Str(g−1∂µgTA) and the ghost

currents. To this end we resort to a slightly unconventional approach [32, 33] whereby the

spatial components of the (super)currents JA
1 , rather than the supercoset representative

itself g ∈ PSU(2, 2|4)/SO(4, 1) × SO(5), are taken as canonical variables. Along the way,

we identify the first class constraints generating the local SO(4, 1) × SO(5) symmetry and

the gauge transformations arising from the pure spinor constraints. We explicitly deter-

mine the action of the classical BRST generators on the fundamental worldsheet fields and

currents. We then show that the BRST generators commute with the Hamiltonian and

we also prove that these BRST generators are nihilpotent along the constraints. A similar

analysis in the more standard approach with g as canonical variable, has been performed

by Chandia for the heterotic string in the pure spinor formulation [24].

The plan of the paper is as follows. In section 2 we recall some basic facts about the pure

spinor formulation of the type IIB superstring on AdS5 ×S5. In section 3, after identifying

the momenta ΠA conjugate to the spatial components of the left-invariant currents JA
1 , we

compute the classical graded Poisson brackets of the currents in a Hamiltonian approach.

In section 4, we study the BRST generators and the Hamiltonian of the theory. In section 5,

we derive the canonical equations of motion and show they are equivalent to the covariant

ones for a natural choice of the Lagrange multipliers. Conservation and nihilpotency of the

BRST charge along the constraints are shown in section 6. In section 7 we briefly address

the issue of global symmetries and integrability in the classical Hamiltonian approach.

Section 8 contains our conclusions and indicates perspectives for future work. Finally

there are two appendices. The first collects our notation and some important features of

PSU(2, 2|4). The second describes an elementary application of the canonical approach

presently exploited to the simple case of a free massless boson.

2. Pure spinor superstring in AdS5 × S5

As shown in [11, 12, 22] the classical action for the manifestly covariant superstring on

AdS5 × S5 takes the form

S = −
∫

d2x
√−ηStr

[

1

2
ηµν

(

J (2)
µ J (2)

ν + J (1)
µ J (3)

ν + J (3)
µ J (1)

ν

)

+

+
εµν

4

(

J (1)
µ J (3)

ν − J (3)
µ J (1)

ν

)

]

−
∫

d2x
√−ηStr(wµPµν∂νλ + ŵµP̃µν∂ν λ̂

+NµPµνJ (0)
ν + N̂µP̃µνJ (0)

ν − 1

2
NµPµνN̂ν − 1

2
N̂µP̃µνNν) , (2.1)
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where we have omitted an overall factor3
√

λ/2π =
√

gsN/π. We have assumed the world-

sheet to be a flat two dimensional space-time with the metric η = diag(−1, 1) and labeled

the world-sheet coordinates as xµ, with µ, ν = 0, 1. However we also use the notation

x0 = t, x1 = x and d2x = dxdt. We have also introduced the (chiral) ‘projectors’

Pµν = ηµν − εµν , P̃µν = ηµν + εµν , εµν =
εµν

√−η
, (2.2)

with ε01 = −ε10 = 1 and the left-invariant (super)currents and ghost fields

J (0)
µ = (g−1∂µg)[cd]T[cd] , J (1)

µ = (g−1∂µg)αTα ,

J (2)
µ = (g−1∂µg)cTc , J (3)

µ = (g−1∂µg)α̂Tα̂ ,

λ = λαTα , wµ = wµαKαβ̂Tβ̂ , λ̂ = λ̂α̂Tα̂ , ŵµ = ŵµα̂K α̂αTα ,

Nµ = −{wµ, λ} = −wµβλα
{

Tβ̂, Tα

}

Kββ̂ = −wµβKββ̂f
[cd]

β̂α
λαT[cd] ,

N̂µ = −
{

ŵµ, λ̂
}

= −ŵµα̂λ̂β̂
{

Tβ̂, Tα

}

K α̂α = −ŵµα̂K α̂αf
[cd]

αβ̂
λ̂β̂T[cd] , (2.3)

where TA are the (super)generators of psu(2, 2|4), some of whose properties can be found

in appendix A, where we define our notation, and KAB denotes the inverse of the Cartan-

Killing metric.

Following Berkovits, the ghost variables λ and λ̂ are chosen to satisfy the pure spinor

constraints

λγγ
c
γβλβ = 0 , λ̂γ̂γ

c

γ̂β̂
λ̂β̂ = 0 . (2.4)

These constraints imply invariance of the action under the gauge transformations

δwµαPµ0 = −Λc(γ
c)α , δwµαPµ1 = −Λc(γ

c)α ,

δŵµα̂P̂µ0 = −Λ̂c(γ
c)α̂ , δŵµα̂P̂µ1 = Λ̂c(γ

c)α̂ . (2.5)

Although a promising and thus far consistent formulation of superstring theories the origin

of the pure spinor approach is not fully understood. Moreover interpreting the pure spinor

constraint (2.4) as the generator of local gauge transformations (2.5) involving (wµ, ŵµ)

suggests that this symmetry should be gauge fixed at the quantum level in some way. There

are many proposals as how to deal with the pure spinor constraint [25 – 30] with no definite

widely accepted conclusion.

3. Hamiltonian analysis

In this section we are going to perform the Hamiltonian analysis of the action (2.1). Our

analysis is based on the approach introduced in [32] and recently used in the context of

the GS superstring in AdS5 × S5 in [34].

To begin with note that the left-invariant (super) current defined as J = g−1dg satisfies

the zero curvature equation

dJ + J ∧ J = 0 (3.1)

3We work in units 2πα′ = 1.
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or explicitly

∂µJν − ∂νJµ + [Jµ, Jν ] = 0 . (3.2)

Using this equation we can express the time component of the current J0 as

∂1J0 + [J1, J0] ≡ D1J0 = ∂0J1 ⇒ J0 = D−1
1 (∂0J1) . (3.3)

where D1 is defined by the first equality.

Although slightly unfamiliar, it turns out to be very convenient to choose J1 as a

canonical variable and then to define the conjugate momentum as the variation of the

action with respect to ∂0J1 [33]. If we replace J0 in the action (2.1) with (3.3) and then

perform the variation with respect to ∂0J1 we obtain

ΠJ = Π(0) + Π(1) + Π(2) + Π(3) =

= −D−1
1

(

D−1
1 (∂0J1)

(2) + D−1
1 (∂0J1)

(3) + D−1
1 (∂0J1)

(1)

−1

2
J

(3)
1 +

1

2
J

(1)
1 − NµPµ0 − N̂µP̃µ0

)

, (3.4)

where we have used the fact that
∫

d2xStr[(D−1
1 G)F ] = −

∫

d2xStr[G(D−1
1 F )] .

We can then introduce the equal-time graded Poisson bracket that for two classical

observables F,G depending on the phase super-space variables ZA ≡ JA
1 ,ΠA is defined as

{F,G} = (−1)|F ||A|

[

∂LF

∂ZA

∂LG

∂ΠA
− (−1)|A| ∂

LF

∂ΠA

∂LG

∂ZA

]

, (3.5)

where the superscript L denotes left derivation. For the components J1 = JA
1 TA, ΠJ =

ΠATA = KABΠBTA, the above PB’s read

{

JA
1 (x),ΠB(y)

}

= (−1)|A|δA
Bδ(x − y) (3.6)

or explicitly

{

J
c
1(x),Πd(y)

}

= δ
c
dδ(x − y) ,

{

J
[cd]
1 (x),Π[ef ](y)

}

= δ
[cd]
[ef ]δ(x − y) ,

{Jα
1 (x),Πβ(y)} = −δα

β δ(x − y) ,
{

J α̂
1 (x),Πβ̂(y)

}

= −δα̂
β̂
δ(x − y) . (3.7)

It is convenient to define ΠA as

ΠA = KABΠB (3.8)
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and to express JA
0 as a function of the canonical variables JA

1 ,ΠA. With the help of (3.4)

we get

Jα
0 = −(∂1Π

α + J
[cd]
1 Πβfα

[cd]β + Jβ
1 Π[cd]fα

β[cd] + J
c
1Πα̂fα

cα̂ + J α̂
1 Πcfα

α̂c) −
1

2
Jα

1 ,

J α̂
0 = −(∂1Π

α̂ + J
[cd]
1 Πβ̂f α̂

[cd]β̂
+ J β̂

1 Π[cd]f α̂
β̂[cd]

+ J
c
1Παf α̂

cα + Jα
1 Πcf α̂

αc) +
1

2
J α̂

1 ,

J
c
0 = −(∂1Π

c + J
[cd]
1 Πff

c
[cd]f + J

f

1 Π[cd]f
c
f [cd] + Jα

1 Πβf
c
αβ + J α̂

1 Πβ̂f
c

α̂β̂
) ,

Φ[cd] = ∂1Π
[cd] + J

[ef ]

1 Π[gh]f
[cd]
[ef ][gh] + J α̂

1 Παf
[cd]
α̂α + Jα

1 Πβ̂f
[cd]

αβ̂
+ JeΠff

[cd]
ef −

−N [cd]
µ Pµ0 − N̂ [cd]

µ P̃µ0 . (3.9)

With (3.9) in mind, we observe few important points. Firstly, the expression Φ is

the constraint that reflects invariance of the action under local gauge SO(4, 1) × SO(5)

transformations. Secondly, due to the fact that, contrary to the standard GS action,

the action (2.1) contains time components of the currents Jα, J α̂, it is not invariant under

local κ symmetry. As a result, in the present approach, the Hamiltonian analysis performed

above does not generate the ’troublesome’ fermionic constraints of the GS approach that

cannot be covariantly split into first and second class, the former being the generators of κ

symmetry [34]. Yet, as we will momentarily see, the pure spinor constraint could be viewed

as the generator of local gauge transformation of the w and ŵ conjugate ghosts.

3.1 Graded Poisson brackets of the currents

In this subsection we determine the graded algebra of Poisson brackets of the currents

using (3.7) and also (3.9).

To begin with, note that by definition, the Poisson bracket between currents with

spatial components is equal to zero

{

JA
1 (x), JB

1 (y)
}

= 0 . (3.10)

Then it is rather straightforward to evaluate the Poisson brackets of JA
0 (x) and JB

1 (y).

Using (3.9) and (3.7) we get

{

JA
0 (x), JB

1 (y)
}

= KAB∂xδ(x − y) + JC
1 (x)fA

CDKDBδ(x − y) , (3.11)

or more explicitly
{

Jα
0 (x), Jβ

1 (y)
}

= J
c
1(x)fα

cα̂K α̂βδ(x − y) ,
{

Jα
0 (x), J β̂

1 (y)
}

= Kαβ̂∂xδ(x − y) + J
[cd]
1 (x)fα

[cd]βKββ̂δ(x − y) ,
{

Jα
0 (x), J

c
1(y)

}

= J α̂
1 (x)fα

α̂dK
dcδ(x − y) ,

{

Jα
0 (x), J

[cd]
1 (y)

}

= Jβ
1 (x)fα

β[ef ]K
[ef ][cd]δ(x − y) ,

{

J α̂
0 (x), J β̂

1 (y)
}

= J
c
1(x)f α̂

cαKαβ̂δ(x − y) ,
{

J α̂
0 (x), Jβ

1 (y)
}

= K α̂β∂xδ(x − y) + J
[cd]
1 (x)f α̂

[cd]β̂
K β̂βδ(x − y) ,

– 5 –
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{

J α̂
0 (x), J

c
1(y)

}

= Jα
1 (x)f α̂

αdK
dcδ(x − y) ,

{

J
c
0(x), Jα

1 (y)
}

= J α̂
1 (x)f

c

α̂β̂
K β̂αδ(x − y) ,

{

J
c
0(x), J α̂

1 (y)
}

= Jα
1 (x)f

c
αβKβα̂δ(x − y) ,

{

J
c
0(x), J

d
1 (y)

}

= Kcd∂xδ(x − y) + J
[fg]

1 (x)f
c
[fg]e

Kedδ(x − y) ,
{

J
c
0(x), J

[cd]
1 (y)

}

= J
d
1 (x)f

c
d[ef ]K

[ef ][cd]δ(x − y) ,
{

J α̂
0 (x), J

[cd]
1 (y)

}

= J β̂
1 (x)f α̂

β̂[ef ]
K [ef ][cd]δ(x − y) . (3.12)

The structure of these PB’s deserves some comments. The first important feature to notice

is that they are not manifestly covariant w.r.t. two dimensional worldsheet transformations.

This is a consequence of the non covariant equal time Hamiltonian formalism. Another

feature is the presence of the non ultra-local terms ∂xδ(x − y). They arise as a result of

our choice of canonical variables. For a better understanding of this approach, we will

perform in appendix A a similar analysis in the simplest case of a two dimensional free

bosonic theory. Finally and very importantly, the PB’s respect the Z4 grading dictated by

the underlying PSU(2, 2|4) structure.

Along the same line, we can calculate the Poisson brackets between the constraint Φ

and the spatial currents JA
1

{

Φ[cd](x), J
[ef ]

1 (y)
}

= −∂xδ(x − y)K [cd][ef ] − J
[ab]
1 (x)f

[cd]
[ab][gh]K

[gh][ef ]δ(x − y) ,
{

Φ[gh](x), J
c
1(y)

}

= −J
d
1 (x)f

[gh]

de Kecδ(x − y) ,
{

Φ[cd](x), Jα
1 (y)

}

= −Jγ
1 (x)f

[cd]

γβ̂
K β̂αδ(x − y) ,

{

Φ[cd](x), J α̂
1 (y)

}

= −J γ̂
1 (x)f

[cd]
γ̂β Kβα̂δ(x − y) , (3.13)

that explicitly show how the left-invariant currents transform under the (right) gauge

transformations generated by Φ[cd].

More involved is the calculation of the Poisson brackets
{

JA
0 (x), JB

0 (y)
}

. Again we

have to resort on (3.9) and (3.7) as well as on the (anti) symmetry properties

fE
ABKBF = −(−1)|B||C|fD

ACKCEKDBKBF = −(−1)|E||F |fF
ACKCE (3.14)

and the graded Jacobi identities

0 = (−1)|A||C|fE
ADfD

BC + (−1)|B||A|fE
BDfD

CA + (−1)|C||B|fE
CDfD

AB = 0 . (3.15)

After straightforward though rather tedious calculations we obtain
{

J
c
0(x), J

d
0 (y)

}

= −(Φ[fg] + N
[fg]
µ Pµ0 + N̂

[fg]
µ P̃µ0)(x)f

c
[fg]eK

edδ(x − y) ,

{

J
c
0(x), Jα

0 (y)
}

= (J β̂
0 − J β̂

1 )(x)f
c

β̂γ̂
K γ̂αδ(x − y) ,

{

J
c
0(x), J α̂

0 (y)
}

= (Jβ
0 + Jβ

1 )(x)f
c
βγKγα̂δ(x − y) ,

{

J
c
0(x),Φ[de](y)

}

= −J
d
0 (x)f

c
d[fg]K

[fg][de]δ(x − y) (3.16)

– 6 –
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and
{

Jα
0 (x), Jβ

0 (y)
}

= (J
c
0 − J

c
1)(x)fα

cα̂K α̂βδ(x − y) ,
{

J α̂
0 (x), J β̂

0 (y)
}

= (J
c
0 + J

c
1)(x)f α̂

cαKαβ̂δ(x − y) ,
{

Jα
0 (x), J α̂

0 (y)
}

= −(Φ[cd] + N [cd]
µ Pµ0 + N̂ [cd]

µ P̃µ0)(x)fα
[cd]γKγα̂δ(x − y) ,

{

Jα
0 (x),Φ[cd](y)

}

= −Jγ
0 (x)fα

γ[ef ]K
[ef ][cd]δ(x − y) ,

{

J α̂
0 (x),Φ[cd](y)

}

= −J γ̂
0 (x)f α̂

γ̂[ef ]K
[ef ][cd]δ(x − y) . (3.17)

Finally we also need the Poisson brackets of the generators of the gauge transformations
{

Φ[cd](x),Φ[ef ](y)
}

= −Φ[ab](x)f
[cd]
[ab][gh]K

[gh][ef ]δ(x − y) . (3.18)

Using the above form of the current algebra, we will momentarily derive the classical

Hamiltonian and the field equations, and prove the nihilpotency and conservation of the

classical BRST charges. It is also clear that using the Poisson brackets given above we

can find the Poisson brackets between the chiral components of the currents JA
± which are

related to JA
z and JA

z̄ after Wick rotation. We will demonstrate a simple instance of this

calculation in the next section where we will also calculate the Poisson brackets between

the BRST charges and some chiral currents. However due to the non-chirally split structure

of the algebra, for our purposes, it is more convenient to work with the Poisson brackets

given above.

4. BRST charges and Hamiltonian

In this section, we discuss the Hamiltonian and the BRST charges together with their

properties. We then derive the classical canonical equations of motion in the next section.

As a first step, we need the action of the BRST charges on the currents and ghost

fields. To begin with we express N [cd], N̂ [cd] using the ghosts and their conjugate momenta.

Since

wµαPµ0 = −πα , wµαPµ1 = −πα ,

ŵµα̂P̃µ0 = −π̂α̂ , ŵµα̂P̃µ1 = π̂α̂ (4.1)

we obtain

N [cd]
µ Pµ0 = πβKββ̂f

[cd]

β̂α
λα ≡ N [cd] ,

N [cd]
µ Pµ1 = πβKββ̂f

[cd]

β̂α
λα = N [cd] ,

N̂ [cd]
µ Pµ0 = π̂β̂K β̂βf

[cd]
βγ̂ λ̂γ̂ ≡ N̂ [cd] ,

N̂ [cd]
µ Pµ1 = −π̂β̂K β̂βf

[cd]
βγ̂ λ̂γ̂ = −N̂ [cd] , (4.2)

where π, λ and π̂, λ̂ satisfy the canonical Poisson brackets

{λα(x), πβ(y)} = δα
β δ(x − y) ,

{

λ̂α̂(x), π̂β̂(y)
}

= δα̂
β̂
δ(x − y) . (4.3)

– 7 –
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However one has to consider effect of the pure spinor constraints on the system (2.4). Their

presence implies that it is natural to study the classical dynamics of the ghosts system as

the dynamics of a constrained system. Using (4.1) and (4.3), it is easy to see that the

constraints

Φc =
1

2
λαγ

c
αβλβ , Φ̂c =

1

2
λ̂α̂γ

c

α̂β̂
λ̂β̂ . (4.4)

generate the gauge transformations (2.5) since

{Φc(x), πβ(y)} = γ
c
βγλγ(y)δ(x − y) ,

{

Φ̂c(x), π̂β̂(y)
}

= γ
c

β̂γ̂
λ̂γ̂(y)δ(x − y) . (4.5)

Using (4.5) we also obtain

{

Φc(x), N [de](y)
}

= −Φh(x)f
c
h[ab]

K [ab][de]δ(x − y) ,
{

Φ̂c(x), N̂ [de](y)
}

= −Φ̂h(x)f
c
h[ab]K

[ab][de]δ(x − y) . (4.6)

In the same way we can show that
{

Φc(x),Φd(y)
}

= 0 ,
{

Φ̂c(x), Φ̂d(y)
}

= 0 . (4.7)

This result implies that the pure spinor constraints are first class.

Let us then consider the Poisson bracket of Φ[cd] with the ghost variables. Using the

explicit form of Φ[cd] given in (3.9) and also (4.2) together with (4.3) we obtain

{

Φ[cd](x), λα(y)
}

= −λβ(x)f
[cd]

ββ̂
K β̂αδ(x − y) ,

{

Φ[cd](x), λ̂α̂(y)
}

= −λ̂β̂(x)f
[cd]

β̂β
Kββ̂δ(x − y) (4.8)

that explicitly demonstrates that λ, λ̂ transform nontrivially under SO(4, 1)×SO(5) gauge

transformations. Moreover, (4.8) also implies

{

Φ[cd](x),Φe(y)
}

= Φf (x)f
e
f [ab]K

[ab][cd]δ(x − y) ,
{

Φ[cd](x), Φ̂e(y)
}

= Φ̂f (x)f
e
f [ab]K

[ab][cd]δ(x − y) . (4.9)

Then (3.18), (4.7) and (4.9) show that Φ[cd],Φc, Φ̂c consist of only first class constraints.

This fact will be important below.

For later purposes we here determine the following Poisson brackets
{

Φ[cd](x), πβ(y)
}

= K [cd][ef ]fγ
[ef ]βπγ(y)δ(x − y) ,

{

Φ[cd](x), π̂β̂(y)
}

= K [cd][ef ]f γ̂

[ef ]β̂
π̂γ̂(y)δ(x − y) (4.10)

and
{

Φ[cd](x), N [ef ](y)
}

= −N [gh](y)f
[cd]
[gh][ab]K

[ab][ef ]δ(x − y) , (4.11)

{

Φ[cd](x), N̂ [ef ](y)
}

= −N̂ [gh](y)f
[cd]
[gh][ab]K

[ab][ef ]δ(x − y) . (4.12)
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4.1 Classical BRST generators

We are ready to study the action of the BRST charges on the fundamental fields that

appear in the action (2.1). As shown in [11, 12, 22] the BRST charges take the form

QR =

∫

dxλ̂α̂Kα̂αJα
µ P̃µ0 = −

∫

dxλ̂α̂Kα̂β[Jβ
0 + Jβ

1 ] ,

QL =

∫

dxλαKαβ̂J β̂
µPµ0 = −

∫

dxλαKαβ̂[J β̂
0 − J β̂

1 ] . (4.13)

Then using the Poisson brackets determined in the previous section we easily get

{

QR, J
c
1(y)

}

= −λ̂α̂J β̂
1 (y)f

c

α̂β̂
,

{

QL, J
c
1(y)

}

= −λαJβ
1 (y)f

c
αβ ,

{

QR, J
c
0(y)

}

= −λ̂α̂J β̂
0 (y)f

c

α̂β̂
,

{

QL, J
c
0(y)

}

= −λαJβ
0 (y)f

c
αβ ,

{QR, Jα
1 (y)} = −λ̂α̂J

c
1(y)fα

α̂c ,
{

QL, J α̂
1 (y)

}

= −λβJ
c
1(y)f α̂

βc ,

{QL, Jα
1 (y)} = ∂1λ

α(y) + J
[cd]
1 λβ(y)fα

[cd]β ≡ ∇1λ
α(y) ,

{

QR, J α̂
1 (y)

}

= ∂1λ̂
α̂(y) + J

[cd]
1 λ̂β̂(y)f α̂

[cd]β̂
≡ ∇1λ̂

α̂(y) (4.14)

where ∇1X
A = ∂1X

A + J
[cd]
1 XB(y)fA

[cd]B, and also

{QR, Jα
0 (y)} = −λ̂α̂J

c
0(y)fα

α̂c ,

{QL, Jα
0 (y)} = λγ(Φ[cd] + N [cd]

µ Pµ0 + N̂ [cd]
µ P̃µ0)(y)fα

γ[cd] −∇1λ
α(y) ,

{

QR, J α̂
0 (y)

}

= λ̂γ̂(Φ[cd] + N [cd]
µ Pµ0 + N̂ [cd]

µ P̃µ0)(y)fα
γ̂[cd] + ∇1λ̂

α̂(y) ,
{

QL, J α̂
0 (y)

}

= −λαJ
c
0(y)f α̂

αc . (4.15)

It turns out that we will also need the following Poisson brackets
{

QL, J
[cd]
1 (y)

}

= λαJ γ̂
1 (y)f

[cd]
αγ̂ ,

{

QR, J
[cd]
1 (y)

}

= λ̂α̂Jβ
1 (y)f

[cd]
α̂β . (4.16)

The Poisson bracket between BRST charges and ghost fields can be easily worked out

using (4.3) and we obtain

{

Q(L,R), λ
α(y)

}

=
{

Q(L,R), λ̂
α̂(y)

}

= 0 ,

{QL, πα(y)} = −Kαβ̂ [J β̂
0 − J β̂

1 ](y) , {QR, πα(y)} = 0 ,

{QR, π̂α̂(y)} = −Kα̂β[Jβ
0 + Jβ

1 ](y) , {QL, π̂α̂(y)} = 0 . (4.17)

In the same way we can determine the Poisson brackets between BRST charges and

N [cd] , N̂ [cd]

{

QL, N [cd](y)
}

= [J β̂
0 − J β̂

1 ]λα(y)f
[cd]

β̂α
,

{

QR, N̂ [cd](y)
}

= [Jβ
0 + Jβ

1 ]λ̂α̂(y)f
[cd]
βα̂ . (4.18)
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Before we conclude this section we would like to briefly discuss the BRST transforma-

tions of the (light-cone) components of the currents

JA
± =

1√
2
(JA

0 ± JA
1 ) . (4.19)

It is rather straightforward to calculate the action of the BRST charges QR, QL on the

(chiral) currents JA
± . For illustration, let us consider the action of the charge Q = QR +QL

on the current J
c
±. Using (4.14) we obtain

{

Q,J
c
+(y)

}

= −λ̂α̂J β̂
+(y)f

c

α̂β̂
− λαJβ

+(y)f
c
αβ ,

{

Q,J
c
−(y)

}

= −λαJβ
−(y)f

c
αβ − λ̂α̂J β̂

−(y)f
c

α̂β̂
. (4.20)

In the same way we can calculate the action of the BRST charge Q on all remaining

currents. Since the procedure is straightforward we will not report it here. However we

have to stress one important point. It can be easily shown that the action of the BRST

charges on the chiral currents that in the canonical formalism is defined as the Poisson

bracket between BRST charge Q and corresponding current, does not fully coincide with

the BRST transformation of currents given in [11]. This follows from the fact that our

calculation is based on Hamiltonian formalism that is not manifestly covariant. Secondly,

the transformation of the currents given in [11] is a combination of a BRST transformation

and a gauge transformation. Unfortunately it is not completely clear to us how these

transformations are related to the BRST transformations given here.

4.2 Hamiltonian

At this point we are ready to determine the Hamiltonian for the pure spinor string in

AdS5 × S5. Using the supergroup notation, we define the matter part of the Hamiltonian

as

Hmatt =

∫

dxStr(∂0J1Π − Lmatt) =

∫

dx

(

1

2

[

J
c
0J

d
0 Kcd + J

c
1J

d
1 Kcd + Jα

0 J β̂
0 Kαβ̂

+J β̂
0 Jα

0 Kβ̂α + Jα
1 J β̂

1 Kαβ̂ + J β̂
1 Jα

1 Kβ̂α

]

+ N [cd]K[cd][ef ]J
[ef ]

1 − N̂ [cd]K[cd][ef ]J
[ef ]

1

)

.(4.21)

In the same way we define the ghost part of the Hamiltonian as

Hghost =

∫

dx
(

πα∂0λ
α + π̂α̂∂0λ̂

α̂ − Lghosts

)

=
∫

dx
(

−πα∂1λ
α + π̂α̂∂1λ̂

α̂ + N [cd]K[cd][ef ]N̂
[ef ]

)

(4.22)

using the fact that

N [cd]
µ PµνK[cd][ef ]N̂

[ef ]
ν = −N [cd]K[cd][ef ]N̂

[ef ] . (4.23)

Finally we introduce the Hamiltonian that corresponds to the SO(4, 1) × SO(5) gauge

symmetry constraints and to the pure spinor constraints (4.4)

Hcons = Hcoset + Hpure ,
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Hcoset =

∫

dxΓ[cd]Φ
[cd] ,

Hpure =

∫

dx(ΓcΦ
c + Γ̂cΦ̂

c) , (4.24)

where Γ[cd] ,Γc , Γ̂c are some a priori arbitrary functions of the phase space variables

(JA
1 ,ΠA, λ, λ̂, π, π̂).4 Then the total Hamiltonian is equal to

H = Hmatt + Hghost + Hcons . (4.25)

The general theory of constrained systems requires that one make sure that the time

evolution of the constraints does not generate any additional (secondary) ones [35]. Let us

begin with Φ[cd] and prove that

{

Φ[cd](x),H
}

≈ 0 , (4.26)

where ≈ means that this Poisson bracket vanishes on constraint surface Φ[cd] = 0.

Firstly, it can be explicitly shown, using the Poisson brackets given in the previous

section that
{

Φ[cd](x),Hmatt + Hghost

}

= 0 . (4.27)

This result can be also considered as a consequence of the fact that Hmatt + Hghost are

manifestly gauge invariant. On the other hand the Poisson bracket of Φ[cd] with Hcoset is

equal to

{

Φ[cd](x),Hcoset

}

=

∫

dy
{

Φ[cd](x),Γ[ef ](y)
}

Φ[ef ](y) +

+ Γ[ef ]K
[ef ][gh]f

[cd]
[gh][ab]Φ

[ab](x) ≈ 0 , (4.28)

where we have used (3.18). Finally, the Poisson bracket between Φ[cd] and Hpure can be

easily calculated with the help of (4.9) and we get

{

Φ[cd](x),Hpure

}

=

∫

dy(
{

Φ[cd](x),Γe(y)
}

Φe(y) +
{

Φ[cd](x), Γ̂e(y)
}

Φ̂e(y)) +

ΓeΦ
f (x)f

e
f [ab]K

[ab][cd] + Γ̂eΦ̂
f (x)f

e
f [ab]K

[ab][cd] ≈ 0 . (4.29)

In other words the Poisson bracket between Φ[cd] and H vanishes on constraint surface and

hence the time evolution of Φ[cd] does not generate additional secondary constraint.

The situation is slightly more complicated in case of the pure spinor constraints (4.4).

In fact, it is easy to see, using (4.6) that

{Φc(x),Hmatt} ≈ 0 ,
{

Φ̂c(x),Hmatt

}

≈ 0 . (4.30)

4It would be certainly interesting to perform a “more symmetric” analysis, whereby the generalized

BRST operators include the constraints Φ[cd], Φc, Φ̂c, as suggested in [30]. We leave this analysis to future

work.
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Moreover, we can also show in the same way as in (4.29) that the Poisson bracket between

pure spinor constraints and Hcoset vanishes on constraint surface. Finally, using (4.7) we

can show that

{Φc(x),Hpure} =
{

Φ̂c(x),Hpure

}

= 0 . (4.31)

On the other hand the Poisson brackets between Φc, Φ̂c and Hghost are equal to

{Φc(x),Hghost} = −∂1λ
αγ

c
αβλβ(x) − Φdf

c
d[ef ]N̂

[ef ](x) =

−∂1Φ
c(x) − Φdf

c
d[ef ]N̂

[ef ](x) ,
{

Φ̂c(x),Hghost

}

= ∂1λ̂
α̂γ

c

α̂β̂
λ̂β̂(x) − Φ̂df

c
d[ef ]N

[ef ](x) =

∂1Φ̂
c(x) − Φ̂df

c
d[ef ]N

[ef ](x) , (4.32)

where we have used (4.5) and (4.6). We momentarily argue that these expressions vanish

along the constraints Φc = Φ̂c = 0. It is obvious that this is true for the second terms

on the second and the fourth line in (4.32). In order to clearly demonstrate that the first

term on the second line in (4.32) vanishes along the constraints as well, note that it can

be written as

∂1Φ
c(x) = lim

x′→x

1

(x′ − x)
(Φc(x′) − Φc(x)) . (4.33)

In other words we can interpret this term as a difference of the constraints at different

points x = x′. Since the constraint functions have to vanish for all x it is now clear that

this difference vanishes as well. In the same way we can argue that the first term on the

fourth line in (4.32) vanishes on the constraint surface Φ̂c = 0. In summary, the time

evolution of the pure spinor constraints does not generate new secondary constraints.

5. Equations of motions

Using the form of the Hamiltonian (4.25) and the known Poisson brackets it is easy to

determine the classical equations of motion for currents and ghosts. We explicitly determine

these equations and show that they coincide with the equations of motion derived in the

Lagrangian formalism [11, 22, 23], for an appropriate choice of the gauge parameters,

P̃µν∇µJ (3)
ν + [J (3)

ν , Nµ]Pµν + [J (3)
ν , N̂µ]P̃µν = 0 , (5.1)

Pµν∇µJ (1)
ν + [J (1)

ν , Nµ]Pµν + [J (1)
ν , N̂µ]P̃µν = 0 , (5.2)

Pµν∇µJ (2)
ν − εµν [J (1)

µ , J (1)
ν ] + [J (2)

ν , Nµ]Pµν + [J (2)
ν , N̂µ]P̃µν = 0 , (5.3)

P̃µν∇µJ (2)
ν + εµν [J (3)

µ , J (3)
ν ] + [J (2)

ν , Nµ]Pµν + [J (2)
ν , N̂µ]P̃µν = 0 , (5.4)

Pµν∇νλ − Pµν [λ, N̂ν ] = 0 , (5.5)

P̃µν∇ν λ̂ − P̃µν [λ̂,Nν ] = 0 , (5.6)

where

∇νJ
(i)
µ = ∂νJ

(i)
µ + [J (0)

ν , J (i)
µ ] ,

∇µλ = ∂µλ + [J (0)
µ , λ] , ∇µλ̂ = ∂µλ̂ + [J (0)

µ , λ̂] , (5.7)
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and where we also used the notations defined in (2.3).

Let us now turn our attention onto the Hamiltonian formalism. Recall that the time

dependence of any classical observable is governed by the equation

∂0X = {X,H} . (5.8)

We must also stress that we will write the resulting form of the equations of motion that

is valid along the constraints Φ[cd] = Φc = Φ̂d = 0.

Let us start with the equation of motion for λα, λ̂α̂. Using
{

λα(x), N [cd](y)
}

= Kαβ̂f
[cd]

β̂γ
λγ(x)δ(x − y) (5.9)

and
{

λ̂α̂(x), N̂ [cd](y)
}

= K α̂βf
[cd]
βγ̂ λ̂γ̂(x)δ(x − y) (5.10)

and also using (4.25) we easily get the equation of motion for λα

∂0λ
α = {λα,H} = −∂1λ

α − J
[cd]
1 λγfα

[cd]γ − N̂ [cd]λγfα
[cd]γ + Γ[cd]λ

γf
[cd]

γβ̂
K β̂α . (5.11)

As we know Γ[cd] are arbitrary functions that reflect the gauge invariance of the theory.

However we can fix the form of these parameters Γ[cd] in order to obtain the form of the

equation of motion that coincide with the covariant equation (5.5).Using the fact that

Γ[cd]λ
γf

[cd]

γβ̂
K β̂α = Γ[cd]λγfα

[cd]γ (5.12)

and by comparing (5.5) with (5.11) we see that it is natural to take

Γ[cd] = −J
[cd]
0 . (5.13)

In what follows we will assume the choice (5.13) that in the end will lead to the equivalence

of the equations of motion derived from the Hamiltonian formalism with the ones derived

using the Lagrangian formalism.

The equation of motion for λ̂ can be easily derived as in the case of the ghost λ and it

coincides with (5.6) with the help of (5.13).

In the following, we will derive the equations of motion for matter variables J (i) using

the Poisson brackets derived in the previous section and the matter Hamiltonian in (4.21).

Let us start with the equation of motion for J
c
1

∂0J
c
1 =

{

J
c
1 ,H

}

=

∂1J
c
0 + J

[ef ]

1 J
d
0 f

c
[ef ]d + J α̂

1 J β̂
0 f

c

α̂β̂
+ Jα

1 Jβ
0 f

c
αβ − J

[ef ]

0 J
d
1 f

c
[ef ]d (5.14)

that can be also written as

−∇0J
(2)
1 + ∇1J

(2)
0 + [J

(3)
1 , J

(3)
0 ] + [J

(1)
1 , J

(1)
0 ] = 0 . (5.15)

On the other hand the equation of motion for J
c
0 is more involved and takes the form

∂0J
c
0 =

{

J
c
0 ,H

}

= Jd
ν N

[ef ]
µ f

c
d[ef ]P

µν + Jd
ν N̂

[ef ]
µ f

c
d[ef ]P̃

µν +

+∂1J
c
1 + J

[ef ]

1 J
d
1 f

c
[ef ]d − J

[ef ]

0 J
d
0 f

c
[ef ]d , (5.16)
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or equivalently

∇1J
(2)
1 −∇0J

(2)
0 + [J (2)

ν , Nµ]Pµν + [J (2)
ν , N̂µ]P̃µν − [J

(3)
1 , J

(3)
0 ] + [J

(1)
1 , J

(1)
0 ] = 0 . (5.17)

On the one hand, if we sum (5.15) with (5.17) we obtain the equation that coincides

with (5.3). On the other hand, if we take the difference of equations (5.15) and (5.17) we

get an equation that coincides with (5.4).

Let us now consider the equation of motion for Jα
1 . After some manipulations it can

be written as

−∇0J
(1)
0 + ∇1J

(1)
1 + [J

(3)
0 , J

(2)
1 ] − [J

(3)
1 , J

(2)
0 ] +

+[J (1)
ν , Nµ]Pµν + [J (1)

ν , N̂µ]P̃µν = 0 . (5.18)

In the same way we can proceed with the equations of motion for Jα
0 that in the compact

notation takes the form

∇1J
(1)
0 −∇0J

(1)
1 + [J

(3)
1 , J

(2)
0 ] − [J

(3)
0 , J

(2)
1 ] = 0 . (5.19)

It is easy to see that the if we add together (5.18) with (5.19) we derive the equation (5.2).

In the same way we can show that the equations of motion for J α̂
1 , J α̂

0 derived in the

Hamiltonian formalism imply the equation (5.1).

6. Conservation and nihilpotency of the BRST charges

In this section we will show that the commutator of the BRST charges QR, QL with the

Hamiltonian vanishes provided the dynamics is restricted to satisfy the local SO(4, 1) ×
SO(5) constraint Φ[cb] = 0 and the pure spinor constraint for the ghost fields. As a first

step, we determine the Poisson bracket between Hmatt and QL. Using the Poisson brackets

given in (4.14), (4.15) and (4.16) we obtain

{QL,Hmatt} =

∫

dx(−∂1λ
αKαβ̂(J β̂

0 − J β̂
1 ) + (J β̂

0 − J β̂
1 )λγf

[cd]

β̂γ
K[cd][ef ]N̂

[ef ]

+ λγΦ[cd]fα
γ[cd]Kαβ̂J β̂

0 + λγN [cd]fα
[cd]γKαβ̂(J β̂

0 + J β̂
1 )) . (6.1)

On the other hand the Poisson bracket of QL with Hghost can be easily worked out

using (4.17) and (4.18) and we get

{QL,Hghost} =

∫

dx(∂1λ
αKαβ̂ [J β̂

0 − J β̂
1 ] − [J β̂

0 − J β̂
1 ]λαf

[cd]

β̂α
K[cd][ef ]N̂

[ef ]) . (6.2)

Finally the Poisson bracket of QL with Hcoset is equal to

{QL,Hcoset} =

∫

dx
{

QL,Γ[cd](x)
}

Φ[cd](x) , (6.3)

where we have used the fact that
{

QL,Φ[cd](x)
}

= 0. In the same way we can show that

{QL,Hpure} ≈ 0 . (6.4)
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Collecting all these results we obtain that the commutator of QL with H is equal to

{QL,H} =

∫

dx(λγfα
γ[cd]Kαβ̂J β̂

0 +
{

QL,Γ[cd](x)
}

)Φ[cd](x)

+

∫

dxλγN [cd]fα
[cd]γKαβ̂(J β̂

0 + J β̂
1 ) . (6.5)

The expression on the first line in (6.5) is proportional to Φ[cd] that is zero on the constraint

surface. On the other hand using the explicit form of N [cd] we can rewrite the expression

on the second line in (6.5), omitting the factor Kαβ̂(J0 − J1)
β̂ , as

λγN [cd]fα
[cd]γ = πβKββ̂f

[cd]

β̂δ
λδfα

[cd]γλγ =
1

2
πβKββ̂fα

β̂c
(λδf

c
δγλγ) , (6.6)

where in the final step we have used the generalized Jacobi identity (3.15). However since

f
c
δγ = 2(γc)δγ we obtain that the BRST charge QL is conserved on the constraint surface

Φ[cd] = Φc = 0 . (6.7)

In the same way we can calculate the Poisson bracket of QR with H and we obtain

{QR,H} =

∫

dx(−Jα
0 λ̂γ̂(x)Kαα̂f α̂

γ̂[cd] +
{

QR,Γ[cd](x)
}

)Φ[cd](x)

−
∫

dxN̂ [cd]f α̂
[cd]γ̂λ̂γ̂Kα̂α(Jα

0 + Jα
1 ) . (6.8)

The expression on the first line in (6.8) is again proportional to the constraint Φ[cd] and

hence it vanishes on the constraint surface Φ[cd] = 0. On the other hand the expression on

the second line is proportional to

−N̂ [cd]f α̂
[cd]γ̂λ̂γ̂Kα̂α = −πγKγδ̂f

[cd]

δ̂β̂
λ̂β̂f α̂

[cd]γ̂λ̂γ̂ =

=
1

2
πγKγδ̂f α̂

δ̂c
(λ̂γ̂f

c

γ̂β̂
λ̂β̂) ∼ Φ̂c (6.9)

and we see that the Hamiltonian ‘commutes’ or, rather, is in involution with QR along

the constraints. In other words we have shown that the BRST charges are conserved as

expected for any generator of a global symmetries.

It is also important to prove that the BRST charges are nihilpotent at least on the

constraint surfaces Φ[cd] = Φc = Φ̂c = 0. In other words we have to show that the

Poisson brackets between QR, QL vanish or they are proportional to generators of gauge

transformations. In fact, using the known form of the Poisson bracket between BRST

generator QL and the currents JA we easily obtain

{QL, QL} = −
∫

dxλαKαβ̂

({

QL, J β̂
0 (x)

}

−
{

QL, J β̂
1 (x)

})

=

=

∫

dxλαKαβ̂f β̂
γcλ

γ [J
c
0 − J

c
1 ] . (6.10)
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Using the fact that

λαKαβ̂f β̂
γcλ

γ = λγfd
γαλαKdc ∼ Φd (6.11)

we obtain the result that the BRST charge QL is nihilpotent as a consequence of the pure

spinor constraint (4.4). We would like to stress that our proof that QL is nihilpotent is

valid even if all fields are off-shell. It only relies on the local SO(4, 1) × SO(5) and pure

spinor constraints.

In case of QR we proceed in the same way and we find that QR is nihilpotent as well.

Finally, we can calculate the Poisson bracket between QR and QL

{QL, QR} = −
∫

dxλ̂α̂Kα̂α[{QL, Jα
0 (x)} + {QL, Jα

1 (x)}] =

= −
∫

dxλ̂α̂Kα̂αλγ(Φ[cd] + N [cd] + N̂ [cd])fα
γ[cd] . (6.12)

It is convenient to rewrite the term proportional to N [cd] as

−λγN [cd]fα
γ[cd] = −1

2
λγf

c
γδλ

δfα
cβ̂

K β̂βπβ ∼ Φc (6.13)

and we see that it vanishes on the constraint surface Φc = 0. In the same way we can show

−λ̂α̂Kα̂αN̂ [cd]fα
γ[cd] = −1

2
λ̂α̂f

c

α̂δ̂
λ̂δ̂f β̂

βcπ̂γ̂K γ̂βKβ̂α ∼ Φ̂c (6.14)

that vanishes on the constraint surface Φ̂c = 0. Finally, the first term in (6.12) is propor-

tional to Φ[cd] and hence it vanishes on the constraint surface Φ[cd] = 0.

Let us summarize the results presented in this section. We have shown that the Poisson

brackets between BRST generators vanish on the constraint surface. It is important that

this result holds without assuming that the fundamental fields obey the equations of motion.

We also hope that this result can be considered as an additional support to the analysis

performed in [12]. It would be certainly very interesting to extend this analysis to the

full quantum theory and further explore the consequence of the non-chiral splitting of the

currents.

7. Global currents and integrability

We would now like to study the classically conserved local currents, that generate global

PSU(2, 2|4) transformations, and their non-local extensions, whose conservation strongly

supports classical integrability of the theory [39, 37, 23, 40, 34, 41], within the present

approach.

In the covariant pure spinor formalism the problem has been studied by Vallilo [23].

One starts with a new set of left-invariant currents Ĵ(u) satisfying the flatness condition

dĴ + Ĵ ∧ Ĵ = 0 (7.1)
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for any value of the spectral parameter u with the ’initial’ condition Ĵ(0) = J = g−1dg.

Making an ansatz of the form

Ĵµ(u) = Jµ +
1

2
Pµν [a(u)Jν(2) + b(u)Jν(1) + c(u)Jν(3) + d̃(u)N̂ν ]

+
1

2
P̃µν [ã(u)Jν(2) + b̃(u)Jν(1) + c̃(u)Jν(3) + d(u)Nν ] (7.2)

and imposing flatness, using flatness of Jµ(0) and the classical field equations, derived

above in a Hamiltonian form or in [23, 12, 22] in a Lagrangian form, one gets5

a = eu − 1 ã = e−u − 1

b = e3u/2 − 1 b̃ = e−u/2 − 1

c = eu/2 − 1 c̃ = e−3u/2 − 1

d = e2u − 1 d̃ = e−2u − 1 (7.3)

so that eventually

Ĵµ(u) = Jµ + (ηµν(cosh u − 1) + εµν sinh u)Jν(2) +

(ηµν(cosh ueu/2 − 1) + εµν sinh ueu/2)Jν(1) +

(ηµν(cosh ue−u/2 − 1) + εµν sinhue−u/2)Jν(3) +

+ sinhueuP̃µνNν − sinhue−uPµνN̂ν .

(7.4)

Flatness of the current Ĵ implies integrability for any u of the equation

D̂µχ = 0 (7.5)

where D̂µ = ∂µ + Ĵµ. It turns out to be convenient to exploit the combination

εµν∂νχ = −εµν Ĵ
νχ + u∂µχ + uĴµχ . (7.6)

Setting Âµ(u) = Ĵµ(u) − Jµ = ug−1aµ(u)g (since Âµ(0) = 0) one gets

εµν∂ν(gχ) = u∂µ(gχ) + (u2aµ(u) − uεµνaν(u))(gχ) . (7.7)

Expanding χ and aµ in powers of u around u = 0, one gets

εµν∂
ν(gχn) = ∂µ(gχn−1) −

n−1
∑

k=0

[εµνa
ν
k − aµ,k−1](gχn−k−1) (7.8)

The lowest order yields

n = 0 ∂ν(gχ0) = 0 (7.9)

5Our spectral parameter u is related to the spectral parameter µ of [23] by µ = eu. Note also that

we have chosen one particular solution from the ones found in [23] in order to obey the initial condition

Ĵµ(0) = Jµ. It is remarkable that the classical theory admits the same two one-parameter families of flat

currents if one sets the contribution of the pure spinor ghost N to zero.
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that implies χ0 = Cg−1, where C is a constant that we can set to C = 1 henceforth for

simplicity. Plugging the latter in the second equation yields

n = 1 εµν∂ν(gχ1) = −εµνa
ν
0 (7.10)

which in turn implies that jµ,0 = εµνaν
0 is a classically conserved local current. In the pure

spinor approach one finds

jµ,0 = g

[

J (2)
µ + J (1)

µ + J (3)
µ +

1

2
εµν(Jν(1) − Jν(3)) + P̃µνNν + PµνN̂ν)

]

g−1 (7.11)

Notice the difference w.r.t. the GS approach where

jGS
µ,0 = g

[

J (2)
µ +

1

2
εµν(J

ν(1)
µ − Jν(3))

]

g−1 (7.12)

in addition to the pure spinor contribution, absent in the GS approach, there is also an

extra contribution in J
(1)
µ and J

(3)
µ since they appear in the kinetic term and not only in the

WZ term, as required by κ symmetry which is instead fixed in the pure spinor approach.

The components jA
µ,0 = Str(TAjµ,0) of the conserved currents are expected to satisfy

classical graded Poisson brackets encoding the structure of the global PSU(2, 2|4) algebra.

As anticipated the procedure can be pushed forward to identify the non-local currents.

The first one arises at the next order where one finds

j1µ = εµν∂ν(gχ2) = −εµν(aν
0gχ1 + aν

1) (7.13)

where

aµ,1 = g[J (2)
µ +

5

8
(J (1)

µ + J (3)
µ ) +

1

2
εµν(Jν(1) − Jν(3)) + P̃µνNν + PµνN̂ν ]g−1 (7.14)

and

gχ1 = − 1

∂2
(∂µaµ

0 ) =
1

∂2
(εµν∂µj0,ν) (7.15)

so that

j1µ = j1µ
1

∂2
(ελν∂λj0,ν) − εµνa

ν
1 (7.16)

and so on.

The classically conserved non local currents generate a Yangian that has been studied

for instance in [37, 38].

8. Conclusions

The present investigation has been devoted to a classical Hamiltonian analysis of the type

IIB superstring on AdS5 × S5 in the pure spinor approach. Following [32, 33], we have

taken the spatial components of the (super)currents as canonical variables. In particular,

we have computed the classical graded Poisson brackets of the left-invariant (super)currents

and identified the first class constraints associated to the gauging of SO(4, 1)× SO(5). We

have then studied the properties of the BRST generators and the Hamiltonian that governs
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the dynamics of the system compatibly with the local SO(4, 1) × SO(5) and pure spinor

constraints. Contrary to the standard GS approach, whereby fermionic constraints are

both first and second class, the former being associated to local κ symmetry, the latter to

the Dirac constraint, all the constraints we have found are first class and can be interpreted

as generators of local symmetries. They appear in the classical Hamiltonian via suitable

Lagrange multipliers. For a natural choice of the latter, we have satisfactorily shown

equivalence of the canonical equations of motion with the covariant ones. Finally we have

briefly discussed the global symmetries and the issue of integrability within the present

framework.

It would be very interesting to further study the structure of the classical global al-

gebra, that includes the global PSU(2, 2|4) symmetry, and its representations. A crucial

step towards understanding the structure and classifying the classical string configurations

(“motions”) is determining the action of the currents on the fundamental fields, either the

coset representative g or the spatial components of the left-invariant (super)currents, and

ghosts. The latter are inescapably tangled with the ‘matter’ fields due to their non trivial

transformations under space-time symmetries. One could then tackle the much harder

issue of quantizing the string in this background and, in particular, finding the spectrum

of excitations beyond the “massless” supergravity states.
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A. Properties of PSU(2, 2|4)

In this appendix, we briefly review the properties of the superalgebra psu(2, 2|4), for more

details we recommend the papers [11, 12, 31, 34].

The generators of psu(2, 2|4) satisfy the graded commutation relations

TATB − (−1)|A||B|TBTA = fC
ABTC , (A.1)

The (super)index A = (c, [cd], c′ , [c′d′], α, α̂) runs over the tangent space indices of the

super-Lie algebra of PSU(2, 2|4), so that (c, [cd]) with c, d = 0, . . . , 4 describe the SO(4, 2)

isometries of AdS5 and (c′, [c′d′]) with c′, d′ = 5 . . . , 9 describe the SO(6) isometries of S5.

We also preserve the notation α and α̂ for the two 16-component Majorana-Weyl spinors.

– 19 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
0

Finally, c stands either for c or c′ (10 (pseudo)translations). In the same way [cd] stands

either for [cd] or for [c′d′] (10+10 (pseudo)rotations’).

The non-vanishing structure constants fC
AB are

f
c
αβ = 2γ

c
αβ , f

c

α̂β̂
= 2γ

c

α̂β̂
,

f
[ef ]

αβ̂
= f

[ef ]

β̂α
= (γef)γαδγβ̂ , f

[e′f ′]

αβ̂
= f

[e′f ′]

β̂α
= −(γe′f ′

)γαδγβ̂ ,

f β̂
αc = −f β̂

cα =
1

2
(γc)αβδββ̂ , fβ

α̂c = −fβ
cα̂ = −1

2
(γc)α̂β̂δββ̂ ,

f
[ef ]
cd =

1

2
δ[e
c δ

f ]
d , f

[e′d′]
c′d′ = −1

2
δ
[e′

c′ δ
f ′]
d′ , f

f

[cd]e = −f
f

e[cd] = ηe[cδ
f

d] ,

f
[gh]

[cd][ef ]
=

1

2

(

ηceδ
[g

d δ
h]
f − ηcfδ

[g

d δh]
c + ηdfδ

[g
c δh]

e − ηdeδ
[g
c δ

h]
f

)

,

fβ
[cd]α = −fβ

α[cd] =
1

2
(γcd)

β
α , f β̂

[cd]α̂ = −f β̂
α̂[cd] =

1

2
(γcd)

β̂
α̂ . (A.2)

The graded-symmetric Cartan-Killing supermetric

KAB = Str(TATB) = (−1)|A||B|KBA , (A.3)

with |A| = 1 if A is associated to a Grassmann odd generator and |A| = 0 if it is Grassmann

even.

An essential feature of the superalgebra psu(2, 2|4) is that it admits Z4 automorphism

Ω such that the condition Ω(H) = H determines the maximal subgroup SO(4, 1) × SO(5)

that has to be quotiented in the definition of the coset.

The Z4 authomorphism Ω allows us to decompose the superalgebra G as

G = H0 ⊕H1 ⊕H2 ⊕H3 , (A.4)

where Hp denotes the eigenspace of Ω such that if hp ∈ Hp then

Ω(hp) = iphp . (A.5)

As we have argued above Ω(h0) = h0 determines H0 = SO(4, 1) × SO(5). H2 includes the

remaining bosonic generators of the superalgebra, while H1,H3 consist of the fermionic

generators of the algebra. The authomorphism Ω also implies a Z4 grading of the (anti)com-

mutation relations

[Hp,Hq] ∈ Hp+q (mod 4) . (A.6)

The generators of subspaces H(i) are denoted as

H0 : T[cd] , H1 : Tα , H2 : Tc , H3 : Tα̂ . (A.7)

Then we can write the current Jµ as

Jµ = JA
µ TA = J (0)

µ + J (1)
µ + J (2)

µ + J (3)
µ , (A.8)

J (0)
µ = J [cd]

µ T[cd] , J (1)
µ = Jα

µ Tα , J (2)
µ = Jc

µTc , J (3)
µ = J α̂

µ Tα̂ , (A.9)
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where A = (a, α, c, [cd]) and where Jα
µ , J α̂

µ are Grassmann odd vectors, while J
[cd]
µ , J

c
µ are

Grassmann even vectors. The Killing form 〈Hp,Hq〉, defined in terms of a supertrace6, is

also Z4 invariant and hence we have

〈Hp,Hq〉 = 0 ,unless p + q = 0 mod 4 . (A.10)

Using the relation (A.10) we find that the the Cartan-Killing (super)metric (A.3) takes the

form

KAB =











κ[cd][ef ] 0 0 0

0 0 0 καβ̂

0 0 ηcd 0

0 κα̂β 0 0











. (A.11)

Finally we also note that the structure constant of the psu(2, 2|4) algebra obey the graded

(anti) symmetry property

fD
ABKDC = −(−1)|A||B|fD

BAKDC = −(−1)|B||C|fD
ACKDB . (A.12)

B. Illustration of the Hamiltonian procedure

In this appendix we will demonstrate that the canonical approach given in section 3 can

be easily applied to the case of a free massless boson.7 Let us start with the action

S = −1

2

∫

d2xηµν∂µφ∂νφ . (B.1)

In the standard Hamiltonian treatment we consider φ as canonical variable with the con-

jugate momentum P = ∂0φ and with the standard Poisson brackets

{φ(x), P (y)} = δ(x − y) . (B.2)

On the other hand let us introduce the group element g = eφ. Then

jµ = g−1∂µg = ∂µφ (B.3)

and hence the action (B.1) can be written as

S =
1

2

∫

d2x(j0j0 − j1j1) (B.4)

It is obvious that the current jµ obeys the flatness condition

∂µjν − ∂µjν = 0 (B.5)

that allows one to express j0 as

j0 =
1

∂1
∂0j1 (B.6)

6We define the supertrace Str in such a way that Str(M) = TrA−TrB if M is an even supermatrix and

Str(M) = TrA + TrB if M is an odd supermatrix.
7We thank H. Samtleben for e-mail exchange on this.
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and hence we can interpret j1 as canonical variable. If we define the conjugate momentum

as π = δS/δ∂0j and use (B.6) we obtain

π = − 1

∂2
1

(∂0j1) , (B.7)

where it is understood that j1 obeys appropriate boundary conditions. We define the

canonical Poisson bracket according to

{j1(x), π(y)} = δ(x − y) . (B.8)

Inverting (B.7) we obtain

−∂1π = j0 (B.9)

and hence

{j0(x), j1(y)} = ∂xδ(x − y) . (B.10)

On the other hand j0 = φ̇ = P , j1 = ∂1φ and hence using {φ(x), P (y)} = δ(x − y) we

obtain

{j0(x), j1(y)} = {P (x), ∂yφ(y)} = −∂yδ(x − y) = ∂xδ(x − y) (B.11)

that coincides with (B.10). The only subtlety one has to take into account is the presence

of the zero modes of φ and π. Luckily they are finite in number and can be dealt with

separately in connection with the choice of boundary conditions.

References

[1] N. Berkovits, A new description of the superstring, hep-th/9604123.
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